
This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

Why Good Developers Write Bad Code: An

Observational Case Study of the Impacts of

Organizational Factors on Software Quality

Mathieu Lavallée, Pierre N. Robillard

Département de génie informatique et génie logiciel

Polytechnique Montréal

Montréal, Canada

[mathieu.lavallee, pierre.robillard]@polymtl.ca

Abstract—How can organizational factors such as structure

and culture have an impact on the working conditions of

developers? This study is based on ten months of observation

of an in-house software development project within a large

telecommunications company. The observation was conducted

during mandatory weekly status meetings, where technical and

managerial issues were raised and discussed. Preliminary

results show that many decisions made under the pressure of

certain organizational factors negatively affected software

quality. This paper describes cases depicting the complexity of

organizational factors and reports on ten issues that have had

a negative impact on quality, followed by suggested avenues for

corrective action.

Index Terms—Organizational factors, software quality,

observational case study.

I. INTRODUCTION AND RELATED WORK

Current studies on software development environments
have focused on improving conditions for the software
development team: implementation of appropriate processes,
hiring skills, use of appropriate communication tools and
equipment, etc. Among these software development
conditions are factors from the organization. However, while
such factors are perceived as important, there is little
empirical evidence of their effect on the quality of software
products [1], [2]. It can therefore be useful to present
empirical data on the effects of organizational factors on the
development team. What if a project’s success is dictated
more by the constraints imposed by the organization than by
the expertise and methodology provided by the team?

Organizational factors include a wide range of contextual
factors with a potential impact on the success or failure of
software development projects. Early empirical work done in
1998 by Jaktman [3] showed that organizational values can
have an impact on software architecture. She presents two
interesting cases: the first revolves around a company who
made software development dependent on the marketing
department. As Jaktman writes: “This resulted in software
quality activities being given a low priority” [3]. The
outcome was a poor architecture, with a lot of code
duplication and high error rates. This jeopardized the
company’s future, because “maintenance problems
prevented new products from being released quickly” [3].

The second case presents a company who was officially
committed to quality, but was ambivalent about how to
implement it. Management promoted various quality
approaches, but ultimately resources failed to materialize.
The “frequent changes to product priorities affected the
code: incomplete implementation of software changes left
dead code and code fragments” [3].

These two cases show the possible relationship between
high-level organizational values and low-level product
quality. Unfortunately, studies reporting on the impact of
organizational factors on software development are scarce.
As Mathew wrote in 2007, “it is surprising to note that
academic research has largely ignored investigation into the
impact of organisational culture on productivity and
quality” [1].

This paper answers the need for more empirical data
through the presentation of observed cases describing how
some organizational factors can impact software quality.

Section II describes the context and the approach used to
collect data for the study. Section III presents the results of
the study, while Section IV discusses the implications of the
findings. Finally, Section V presents some concluding
remarks and observations on organizational factors.

II. METHODOLOGY

A. Context

The study was performed on a large telecommunications
company with over forty years in the industry. Throughout
the years, the company has developed a large amount of
software, which must be constantly updated. This study
follows one such project update.

The outcomes of this study are based on observation of a
software development team involved in a two-year project
for an internal client. The project involved a complete
redesign of an existing software package, which we will call
the Module, used in the company’s internal business
processes.

The technical challenge of the Module is its distributed
nature: it includes legacy software written in COBOL, Web
interfaces, interactions with mobile devices and multiple
databases. Its purpose is to manage work orders. To do this,
it needs to extract data from multiple sources within the

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

enterprise (employee list, equipment list, etc.) and send it to
multiple databases (payroll, quality control, etc.).

The project was a second attempt to overhaul this
complex Module. A first attempt was made between 2010
and 2012 but was abandoned after the fully integrated
software did not work. Because this project was a second
attempt, many specifications and design documents could be
reused. Accordingly, the development has essentially
followed a waterfall process, as few problems were expected
the second time around. This second attempt began in 2013
and finished in December 2014.

B. Data Collection

The study is based on non-participant observation of the
software development team’s weekly status meetings. These
meetings consisted of a mandatory all-hands discussion for
the eight developers assigned mostly full-time to the project,
along with the project manager. They also involved, as
needed, developers from related external modules, testers,
database administrators, security experts, a quality control
specialist, etc. The meetings involved up to 15 participants,
and up to five stakeholders through conference calls.

The team discussed the progress made during the
previous week, the work planned for the coming week and
obstacles to progress. The problems raised concerned
resources and technical issues. Few decisions were taken at
these meetings, the purpose being to share the content of the
previous week’s discussions between developers, testers,
managers, etc.

A round-table format was used, where each participant
was asked to report on their activities. The discussions were
open and everyone was encouraged to contribute. When a
particular issue required too much time, participants were
asked to set another meeting to discuss it. Meetings lasted
about an hour.

The data presented in this study were collected over ten
months during the last phase of the two-year project. It is
based on 36 meetings held between January and November
2014. The same observer attended all the meetings and took
note of who was involved in each interaction, the topic being
discussed, and the outcome. An interaction is defined as a
proposition or argument presented by one or more team
members. A typical interaction takes between 5 seconds (e.g.
“yes, I agree with you”) and 30 seconds (e.g. the presentation
of a solution by many team members). A topic (e.g. “should
we deploy on Thursday or on Saturday?”) could be discussed
over multiple interactions (e.g. “yes because…” and “no
because…”), and sometimes ended with an outcome (e.g.
“we will deploy on Saturday”).

C. Validation

The weekly status meetings provided a lot of
information about the developers and the product. However,
they provided only the perspective of the meeting
participants. To better understand how the organization
operates, the observer interviewed two managers from
different departments (operations and marketing) on July
22nd in order to obtain their views. This validation was
performed in a semi-structured interview. The observer

asked the two managers if they agreed or disagreed with the
preliminary conclusions made so far.

A second validation was performed at the end of the
study. Since it was a non-participant study, the subjects
observed were not aware of the conclusions reached by the
researchers. A presentation was therefore made in
December 2014 in order to confirm or refute the conclusions
of the researchers. Results of the validation, when
conflicting with our interpretations, are presented in the
following and at the end of each case discussion.

Another validation was performed with an unrelated
public sector software development department in
December 2014. The thirteen workers were presented with
the conclusions from this study and asked to rate whether
the conclusion applied to their situation. For each of the
cases identified in this study, the participants confirmed the
occurrence of the issues within their organization.

D. Threats to Validity

The main issue was that the non-participant observer was
not familiar with the technical terms used by developers, a
common issue for non-participant observation studies [4].
The observer was present in the organization only during the
weekly meetings, which means he was not aware of the
interactions taking place outside the meetings. The observer
was therefore not always up to date on what was going on.
However, several problems recurred many times during the
seven-month study, and were thus easy to follow and
understand. The issues presented here are glaring problems
that were not subject to interpretation and were all confirmed
by the two managers during the validation interview.

As a single case study, generalization of the issues
identified can be disputed. However, given the current small
number of non-participant observational studies in software
engineering, it is surmised that the data collected in this
study remain interesting for future researchers. Additionally,
given that the issues presented were confirmed during the
validation process and in the literature review, it is believed
that these issues are relevant for multiple contexts.

III. OBSERVATONS

The Core Team consisted of one manager and eight
developers. However, it is surprising how many people are
needed to interact with the core team to understand,
develop, test and deploy the Module successfully. As shown
in Figure 1, the core team interacted with no fewer than 45
people in at least 13 different teams during the ten month
study.

Figure 1 also shows the relationship between the Core
Team (shown in the middle) and the other teams involved in
the project. Each team is represented by an oval shape with
a descriptive label and contains the numbers and titles of the
interacting members. For example, the Quality Assurance
team, third from the top, clockwise, involved a quality tester
and a quality manager interacting with the Core Team.

 The innermost oval shape represents the Core Team,
whose members were present at most meetings. The
frequency of interactions with the Core Team is described
by the dashed concentric circles. The second concentric

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

Almost every meeting

Most meetings

Few meetings

Contacted outside
meetings

1x Project manager
4x Senior developers

2x Contract developers
2x Developers

1x Security
expert

CORE TEAM

INTERNAL DEPENDENCY TEAM

1x Analyst
1x Analyst

1x Developer

TESTING
TEAM

2x Testers
1x Test

manager

1x Security
expert

1x Quality
tester

1x Quality
manager

1x DB admin

1x DB admin

3x Web
developers

12x Others

5x
Operators

OFFSITE
DEVELOPMENT

1x Contract
developer

1x Contract
developer

1x
Manager

MAINTENANCE
TEAM

2x
Developers

1x
Developer

1x
Developer

1x Other

1x
Developer

1x
Developer

1x
Customer

contact

TRAINING
TEAM

1x
Manager

NETWORK ADMIN
1x

Network
admin

Figure 1. People and teams involved in the project, and how often they were in contact with the core development team.

circle shows the people who came to most (i.e. at least half)
of the meetings. The third concentric circle represents the
people who came to only one or two meetings, or who were
present through a conference call. The outer concentric
circle represents people who did not attend the weekly
meeting during the study, but who were referred to during
discussions and contacted outside the meetings. For
example, the quality tester from the Quality Assurance team
attended seven meetings, and the Core Team members
referred a few times to the quality manager’s requests
during meetings.

As the study focused on late phases of the development
project, the teams in the second circle are mostly related to
testing activities. In the early stages of the project, the
operations department, being the internal client of the
project, was much more involved.

Table I presents the organizational issues and their
impacts on quality as observed during the study and
confirmed during the validation. The following subsections
detail each issue. The generic cases for each issue are
discussed in Section IV.

A. The “documenting complexity” issue

This company has been in the telecommunications
business for many decades. The objective of their software

development department is to support the main business
process and therefore the main concern is to provide
software applications. Much of the existing code is poorly
structured and difficult to understand.

Over the years, the company’s legacy code has become
very large, very complex and, like a lot of older software, is
poorly documented.

 Over time, the organization has encouraged software
engineering practices to ensure that new software has
sufficient documentation for maintenance and user support
teams. However, most software modules are still poorly
documented. To make matters worse, many developers have
since left the company.

For the Module developed during this study, they have
extensive documentation – thousands of pages – from the
previous attempt to develop the software. This
documentation is incomplete, and its quality is questionable
as the previous implementation failed. Nobody knows
exactly how it all works because of the size of the
documentation. Despite their attempts to understand how the
Module works, they assumed that some features are going to
fall through the cracks.

Therefore, during the final stage of development, a senior
developer was assigned to what they called the “crack”, or
the list of features that were initially overlooked. Some of

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

TABLE I. ORGANIZATIONAL ISSUES WITH AN IMPACT ON QUALITY AS OBSERVED DURING THE STUDY.

Observed
issue

Observed evidence Observed quality flaw Suggested corrective action

Documenting
complexity

Large amount of old poorly documented
software. Difficulty in managing large amounts
of documentation.

Some requirements are discovered late in
the development process. Some
undocumented features were not
implemented; others were patched together
very quickly.

Once a project is completed, the team must
ensure that the “What” and “Why” of each
software item are properly documented.

Internal
dependencies

Lots of interdependencies between software
modules. Conflicts between projects on the
scheduling of deployment.

Compatibility between modules is patched
quickly and haphazardly.

In the cases of parallel development of
inter-dependent software modules set up a
negotiation table to solve conflict between
the development teams.

External
dependencies

Long-term dependencies to third-party
libraries. Change requests to third parties
results in costly delays.

Contractual obligations with third parties
force poor quality design choices in order
to minimize change requests.

Make sure that the development team is
aware of the CMMI-ACQ or ISO12207
processes for negotiating with third parties.

Cloud storage
Contractual obligations with third parties do
not support vulnerability testing.

Vulnerability testing is performed late and
quickly.

Make sure that testers are involved when
negotiating with a third party for a
potentially vulnerable software component.

Organically
grown

processes

Processes emerge as the need arise, usually
after crises. Defects found by users are
documented but do not reach developers.
Environment setup process unclear for
developers. Patches in testing follow a
stringent process, even when nothing works.

Frontiers between processes hinder
information exchanges; developers must
work with missing details.

Plan organization-wide process reviews to
detect isolated processes and to promote
information flows between processes.

Budget
protection

Cheaper to build a wrapper instead of solving
the issue once and for all. A software item has
twelve such wrappers.

Developers patch instead of fixing issues
because fixing would cost too much.

Planned special budget items to support
long lasting corrections or corrections that
are likely to benefit many modules.

Scope
protection

Explicit calls by team members to “protect the
scope” of the project. Requirements are
transferred to other projects as much as
possible.

Project constraints means that teams must
protect the scope of their project against
change requests from other teams.

Projects with strict deadlines are risky, and
should be carefully monitored to avoid last
minute unplanned activities.

Organizational
politics

Change request refused because the team did
not contact the right person. Environmental
issues resolved when the right manager was
contacted. Inter-module issues resolved when
upper manager applied pressure.

Managers and developers obtain better
results by calling in favors from outside the
software engineering process. Novices who
do not know who to contact to obtain
information will produce worse software.

Team members should maintain a careful
balance between the flows of information
within formal development processes and
informal human interactions.

Human
resource
planning

The two developers assigned since the
beginning of the project are contractual
developers whose contract is about to expire.

The team will lose all knowledge of the
beginning of the project, including details
on the requirements and analysis phases.
Documentation of the Module will be
incomplete and/or inaccurate.

Team members should make sure that
knowledge is appropriately distributed
amongst them. For example, pair
programming is a practice which can
promote knowledge sharing.

Undue
pressure

Managers and senior developers give direct
orders and threats to the team.

The issuers of the orders and threats might
not have all relevant information which
could results in ill-defined priorities.
Bypassing the normal team structure
undermines its decision-making process.

Any intrusion into the team dynamics by
outsiders should be done very carefully.

these missing features were identified as “must-have” for
operators and could very well be among the reasons for the
failure of the previous project. For example:

 A number of daily maintenance scripts whose
purpose is to maintain the database in a healthy state.

 A rarely-used user interface which aims to support
the main business process when the main server is
inaccessible due to connection issues.

 An archive feature used for quality monitoring.

These features escaped scrutiny, either because they were
invisible to the operators of the Module, or because they
were rarely used. The difficulty of documenting the
complexity of the Module was that these functions were not
noticed until late in the development.

The impact on quality was that some of these features
were not fully implemented. For example, the rarely-used
user interface will not have all the necessary features, but

will be limited to a barebones interface. Other features that
had fallen into the “crack” and were not identified as “must-
have” were simply ignored. Developers have argued that
they will be implemented in a future update.

B. The “internal dependencies” issue

The Module has many dependencies with other modules
within the company’s extensive legacy code. In addition,
many other modules are simultaneously undergoing
perfective maintenance. These interdependencies cause
many issues since changes in the Module may affect other
modules, and vice versa.

Priority decisions on module changes depend largely on
the deployment schedules. For a module deployed later, the
schedule must take into account the changes implemented
on the previous modules. However, technical or business
constraints may force the rapid deployment of certain
features. For example, changes in the database must often be
propagated early to ensure that the data structure will be

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

coherent in all the linked modules.
 Change requests from these internal dependencies

have an impact on the quality of the Module. These change
requests are often implemented quickly and haphazardly, as
they are rarely planned or budgeted. Even in cases where an
analysis is performed, allowing the allocation of additional
resources, deployment schedules are rarely modified,
resulting in greater deadline pressures.

C. The “external dependencies” issue

The Module has many dependencies with third party
modules, which are based on contract agreements. The Core
Team must deal with these modules on a case-by-case basis,
since each third party module has different contracts,
practices and processes. Change requests (“CRs”) are
defined differently amongst the various third party contracts.
For example, a minor change request on an external module
might be considered billable for one third party supplier, or
as covered by the maintenance contract for another. To make
things worse, the quality of the work performed by third
party suppliers fluctuates wildly. In many cases, the CR
work had to be sent back to the supplier for rework, because
it was not coherent with specifications, or of poor quality.
Communication problems with third party suppliers were
confirmed by many of the managers who had to deal with
them.

These external dependency constraints force the team to
make decisions that may have a significant impact on
quality, in order to reduce costs and lead times. One practical
example is the transformation of a variable type at the
boundary between the Module and an external third party
module from an enumeration to a free text type. From a
quality standpoint, this is likely to introduce problems since
the free text type cannot be validated, while the enumeration
is self-documenting by the bounded and defined range of
values.

So why was this decision made? Because each time an
enumeration value needed to be modified, the third party
supplier asked for a billable CR, which meant that changes to
the enumeration type soon became prohibitively lengthy and
expensive. In the short term, it was deemed cheaper to use a
free text-type variable, even if it meant causing future hard-
to-diagnose software defects.

D. The “cloud storage” issue

While not strictly pertaining to cloud computing, this
issue is related to code hosted by other entities than the
owner of the Module. In this observed case, some
contractual agreements with these third party entities did not
include all the planned test activities. This meant that some
tests could not be performed until the contracts were
renegotiated with the relevant clauses.

For example, the initial agreement did not allow
vulnerability testing. The vulnerability tests were aimed at
finding technical issues, like SQL injections, as well as
overall robustness evaluation, like resistance to Denial of
Service (DoS) attacks. The risk to quality is potentially
huge. Without these tests, it is possible that a vulnerable
code segment could remain in the Module, exposing the

company to liability should a customer’s account be
compromised.

Vulnerability testing was thus performed very late in the
development process, as the contracts needed reviewing by
both parties. A quick superficial test found over 350
vulnerabilities in one third-party library which was already
used in production, prompting one security expert to say
that “this was certainly written by junior developers”.

E. The “organically grown processes” issue

The best practices of software engineering appeared in
parallel with the company’s growth. After all, the company
has been around for decades, or about as long as software
engineering itself. Software engineering processes were thus
introduced organically, as the need arose or became apparent
in a crisis. This resulted in “islands of formality”: some
software development teams within the organization follow a
very clear and well-defined process, while others still work
in a mostly ad hoc fashion.

For example, the quality control team follows a very
well-defined process. The development team is more
informal, but has a set of standard practices. And yet both
processes evolved organically, so that that the quality control
process is very different from the development process. This
requires some coordination effort at the organizational level.
The development team is aware that it must provide some
documentation to the quality control team, but the developers
do not know the level of documentation required.

These frontiers between processes resulted in some
serious issues. For example, during the acceptance phase, the
testers and the developers found that a requirement had not
been met. This was a serious setback, as it meant that the
developers and testers had to produce code and validate it in
a rush. That missing requirement was to fix an issue with the
previous version of the Module. The quality control team
was aware of this requirement but failed or neglected to
propagate the information to the development team.

Another serious issue was with the setup of testing
environments. It took weeks for the testing environment to
be set up, and the environment was never fully coherent with
the specifications given because of misunderstandings
between the developers’ needs and the environment team’s
comprehension. It took many more weeks of back and forth
iterations before the new environment could be used.
Unfortunately, by the time the problems were solved, most
of the development team’s allowed time for this environment
had elapsed and the testing environment was passed to
another team. As one developer exclaimed during one of the
meetings: “We fought like dogs to get this environment and
we can’t even use it!”

At the other end of the spectrum, the organization had
introduced a new, very stringent process for the submission
of code patches to non-development environments. This new
process was introduced after insufficiently tested code ended
up causing havoc in production. Though warranted, it causes
a lot of complications when applied to patches in test
environments. Code patches cannot be freely submitted to
test environments because testers must be constantly aware
of how the code changes within their testing environment.

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

The issue is that this procedure is applied even during
environmental setup; that is, when code must be adjusted
because the environment is being built for the first time. The
new process did not take into account the development of
new environments, which caused undue and frustrating
delays.

F. The “budget protection” issue

The organization’s culture puts an emphasis on staying
on target, meaning deliveries on time and under budget. The
pressure on the team is real: an observed example is the
practice of patching instead of fixing. One specific external
software item was in dire need of a fix. Unfortunately, a fix
requires a formal CR—a costly and billable project estimated
at about 20 person-days. The software development team
instead chose to internally develop a wrapper in order to
mash the data to address their need, a cheap patch which
could be done for about five person-days.

Currently, that specific software item has about 12 such
wrappers. This means that at least 12 other development
teams chose the cheap patch solution instead of the costly
fix, even if the one costly fix would have obviated the need
for 12 cheap patches. In the words of the developers
themselves, “Eventually, one team will need to bear the cost
of fixing this.” No one wants to be that team that will go
over-budget, and be criticized for it.

The validation provided a mitigated point of view of this
issue. The operations manager said budget was rarely an
issue, probably because his team’s work was directly linked
to the company’s main business process. The marketing
manager, however, said budgets were tightly monitored and
it was very difficult to argue for more time and money.
Discussion with the Module’s developers outlined that
budget pressure was not the main issue, deadline pressure
was. The team admitted that they had budget restrictions, but
was much more concerned with limiting the scope in order to
prevent deadline slippages.

G. The “scope protection” issue

A large part of the managers’ duty is to protect the scope
of the project, i.e. prevent modifications to the original
specifications of the project. This is closely related to the
internal dependency issue, as the scope of the project is
mostly assailed by other projects that want to assign some of
their related code changes to the Module. This may cause
conflicts between development teams, since each team
wants to protect its own project. The following scenarios are
often put forward:

 Requiring a change: We ask you to adapt your
code to our changes otherwise our project may fail
integration testing;

 Refuting a change: We may ignore your code
changes, since they are out of our project scope. If
you really want it, we will bill your project for the
changes.

The following example occurred one week before going
into acceptance testing. The Module operators asked for a

new feature, which would require some major changes. The
team proceeded to:

 Convince the operators that it was not in the initial
specifications, and that it may be implemented in a
future project.

 Convince upper management that the change was not
as minor as it first seemed, and could not be tested
properly before acceptance testing, which would
introduce some significant risks into the deployment.

Scope freezes exist within the organization, but are hard
to enforce. The organization works in a very competitive
domain: If a competitor provides a new service, the
organization must support a similar service as soon as
possible. Therefore, development priorities can be shifted
overnight.

Additionally, compatibility between modules is often
raised at the last minute and is therefore patched
haphazardly, which may have a dubious impact on the
resulting software product. This results in software defects
at the boundaries between modules, where each side blames
the other for the errors, lengthening the debugging process
and making deadline slippage more likely. Therefore, the
organization’s culture of independent teams working within
tight deadlines causes them to work mostly in competition
with each other.

H. The “organizational politics” issue

Within an organization, the manager’s most important
tool is often his/her list of contacts.

For example, sometimes third party entities would refuse
a CR on the basis that the change would violate the core
functionality of their libraries. Inexperienced developers or
managers would often accept these refusals at face value.
However, employees with experience on the capability of
the external libraries would often challenge these decisions.
One manager confirmed cases where decisions challenged
by experienced developers were conceded by the third party.
In these cases, talking to the right person at the third party
entity was the key factor of success.

Another example is illustrated by the problems that
plagued the team for over two months concerning test
environments. After nearly two months of stalling and non-
functional test environments, a senior operations manager
asked the Module manager to contact him each time a
problem occurred with the environments. The problems
were resolved within a week.

A similar problem, concerning inter-module
communications, was resolved very quickly when the right
person—the senior operations manager—applied pressure
on the right people in charge of the other module.

Quality-wise, this means that many issues dragged on
for weeks before being resolved, and that developers did not
have as much time as they needed to correct the issues,
which is likely to result in more patched-on code.

It also means that even a well-defined software
engineering process would not resolve some of these issues,
which are dependent on goodwill and personal contacts.

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

This kind of behavior is often deeply rooted within the
organizational culture of the company.

I. The “human resource planning” issue

The composition of the development team evolved
throughout the project. Some developers joined when their
specific expertise was required, and left when it was no
longer needed. This is typical of most development projects.
However, what is peculiar in this case is that the only
developers who have participated in the project since its
beginning, the Module’s “team historians” as defined by La
Toza et al. ([5], cited by [6]), are two contractual employees
whose contract is about to end. This means that the
development team will lose all the knowledge of the first
few months of the project just before deploying the
application on the production server.

The team realized that this could be risky, and the
contractual developers were kept until the deployment and
asked to frantically write documentation in order to support
maintenance activities after their departure. One contractual
developer has been assigned a new experienced developer in
order to transfer his knowledge of the project to him.

However, these knowledge transfer tasks were assigned
on top of the usual activities of the contractual developers.
During two weekly status meetings, the new developer
simply states that he is “waiting on the developer” to give
him the relevant information, hinting that knowledge
transfer is not at the top of their priorities.

Human resources should be better planned for long-term
software development. To quote Laurie and Kessler on the
issue:

“It is not advantageous to have all knowledge in any
area of a system known to only one person. […] This is very
risky because the loss of one of a few individuals can be
debilitating.” [7]

At least the issue was handled before it was too late, but
it could have been avoided altogether.

J. The “undue pressure” issue

As presented earlier, software development is not the
main business process of the company. Its bread and butter
are the operation of telecommunications services, and as
such the most important department is operations.
Consequently, operations have a lot of pull when it comes to
coercing teams in other departments to perform specific
tasks.

 The observer has seen two occasions where operations
personnel came to the weekly status meeting to put explicit
pressure on the software developers. In one of the cases, the
operations manager presented a clear threat: “If you do not
allow 100% of your time on [a specific activity], I will be
very disappointed. Very disappointed. Did I make myself
clear?” The operations department was clearly unhappy
about the advancement of an activity and made its
disappointment evident.

The “undue pressure” approach supposes that developers
are not doing their best. Yet they were already working full
time on their assigned tasks and were frantically putting the

finishing touches on features that were about to be sent to
testing.

The issue is that the pressure, which might be justified in
some cases, must be applied in the appropriate context.
Undue pressure from upper management or from other
departments can coerce the team to work on subjects that
are not optimal for the quality of the product, especially
when management is not completely up-to-date with the
project status.

IV. DISCUSSION

One of the main issues of observational study research is
whether the observations can be generalized to other
settings. In the case at hand, the following question can
therefore be asked: Is this a one-of-a-kind organization, or
does it represent a widespread situation within the industry?

Similar research performed by Jaktman in 1998 showed
that organizational values have an impact on the high-level
architecture of software and should therefore not be
neglected [3]. A survey of 40 Chinese companies performed
by Leung in 2001 shows that quality is the last concern for
management, after functionally correct, within budget and
on schedule. Similarly, among quality characteristics,
maintainability trails behind reliability and functionally
correct, with only 35% of managers considering quality to
be a key issue [2]. Software engineers want to produce
quality software, but it seems that many organizations do
not take the proper approach to reach this goal.

Two observation sessions conducted by Allison in 2010
[8] showed the following:

 Case 1: When a conflict arose between Agile teams
within a non-Agile organization, the will of the
organization prevailed and the Agile principles more
or less disappeared.

 Case 2: Constant pressure from an organization on
one of its development teams forced them to change
their practices, despite significant resistance on the
team’s part.

Allison’s conclusion is that the influence of the
organization on the team is larger than the influence of the
team on the organization.

It can therefore be surmised that organizational factors
may impact product quality, as the values of the
organization will influence how team decisions are made.

The objective of this observational study is to bring
more evidence to existing literature on specific issues
related to organizational values or structures, and software
quality. The following sections present how each issue
could be related to a generic case, and present the literature
pertaining to this case, when it is available. We also suggest
corrective action which, although case-specific, might prove
useful for other practitioners facing similar issues.

A. The generic case of “documenting complexity”

The “documenting complexity” issue is related to
knowledge management processes, especially on how
development teams transfer knowledge to support and
maintenance. The observed developers had many questions

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

on the legacy software in their organization. These questions
can be summarized into the two following queries:

 Why does this specific piece of software exist? What
does it do? Who needs this software?

 How does it work? Which resources (database,
internet ports, etc.) does it use?

These issues are well-known in the knowledge
management field. The need to record both the “what”
(inner workings) and the “why” (design rationale) of
software has been well documented [9], [10].

In the observed case, the complete system is broken
down into software items like modules, scripts, libraries,
etc. The purpose of each software item within the complete
system is often unknown, as few of them are documented.
Developers need to know how the software item works, in
order to maintain its functionality. But they especially want
to know its purpose, in order to ensure that their changes do
not break it. To paraphrase Ko et al., the ideal, cost-
effective, documentation system would be “demand-driven”
instead of exhaustive [6]. Ko et al. encourages face-to-face
interactions with colleagues because the data are available
on demand and it requires little effort to record, maintain
and transmit.

An up-to-date list of experts within the organization for
each software item could also be interesting for future
development efforts [11], although it cannot be considered a
panacea by itself [12].

B. The generic case of “internal dependencies”

The “internal dependencies” issue is related to the
concurrent development of inter-dependent modules. This is
a common issue when using third party libraries, an issue
which is resolved by providing multiple version support of
by designing flexible services [13]. See for example, the
multiple PHP language libraries supported [14].

Supporting multiple versions is not always financially
possible within private organizations, however. For the
observed organization, the software developed is executed
only once on the organization’s servers. There is no need to
support multiple versions, because only the latest version
will be executed at any given time. This may result in some
conflicts, as each team wants to push its latest version to the
organization’s server, causing rippling issues within other
modules currently under development.

This issue has not been directly studied in the literature.
At the technical level, it can be related to the design of
evolving families of web-services [13]. This approach might
be a hard-sell however for an organization where only one
version of the software is executed.

At the management level, it can be related to inter-team
negotiations within global software development contexts
[15]. Team negotiations are still an emerging research
subject, as Guo and Lim presented in 2007:

“Despite considerable investigation on negotiation
support systems (NSS), such research is largely in dyadic
(i.e., one-to-one) context which is challenged by the
observations of business practices: negotiating teams often
appear at the bargaining table.” [15]

This case study confirms the suspicions of Guo and Lim
that team negotiations often occur within business contexts,
and that these negotiations can lead to conflicts.

As a corrective action, in the case of parallel
development of inter-dependent software modules, we
suggest setting up a negotiation table to settle conflicts
between the development teams. Given the effort required to
manage negotiations and track results, efforts should be
focused on dependencies with significant impacts on each
project’s success. The use of a software tool like the one
suggested by Guo and Lim [15] could also help mitigate the
effort overhead of negotiation tables.

C. The generic case of “external dependencies”

The “external dependencies” issue is related to
acquisition and reuse processes, especially on how to
interact with third party developers. Within the observed
organization, the impact of contractual obligations with
third party developers is twofold:

 First, the many different entities and contracts are an
important knowledge hurdle for new developers,
who need to know who to contact to obtain
information, and which modifications are possible
under the current contract.

 Second, the cost (in time and money) of CRs forces
developers to make cost-conscious decisions, instead
of quality-conscious ones.

Research on third party acquisition and reuse is
abundant: For example, it is the purpose of the CMMI-ACQ
[16] and it is covered by the Acquisition process of ISO
12207 [17]. The CMMI-ACQ, especially, outlines the need
for training after the acquisition of third party software, in
order to avoid the first impact presented above.

The second impact is also covered in the contractual
negotiation sections of the two models. The importance of
selecting the right third party developers cannot be
underestimated: it is important to ensure that third party
developers make the requested changes in a cost-effective
and timely manner, and that they follow the rules of the
trade. In the case observed, many CRs were performed
either late or poorly, and did not meet the specifications
given. These constant costly delays forced the development
team to change their design for the worse, in order to avoid
dealing with CRs.

As a corrective action, we suggest that the organization
make sure that the team responsible for third party software
acquisitions is aware of the CMMI-ACQ or ISO12207
processes, and of known challenges during large-scale scale
software acquisitions [18]. The impact of a poor contract
can be serious: in some cases, the customization performed
by the company in order to work with the third party
software is so extensive that moving to another supplier can
be prohibitively expensive. Some of these acquisitions will
last many years, or even decades.

D. The generic case of the “cloud storage” issue

The “cloud storage” issue is similar to the previous one,
but has to do with testers instead of developers. The issue

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

here is related to the absence of testers during contract
negotiations: some of the specifications of the development
team had not been met by the contract.

However, given the sensitivity of the matter
(vulnerability testing), negotiations are bound to be difficult.
The issue is that the whole system works as a chain, where
an input passes within multiple subsystems before
producing an output. Some of these subsystems within the
chain are supported by third party entities. The observed
organization wants to test for specific security vulnerability,
but some of these third party entities are not warm to the
idea of having one of their clients literally hacking their
systems.

Cloud vulnerability testing is currently an emerging
research area. Its importance is undeniable: following the
theft of 40 million Target credit card accounts, the company
was forced to testify before the U.S. Congress and had to
fork over US$60 million in costs to mitigate the issue [19].
The observed organization wanted to avoid a similar
catastrophe, which could result in its customers’ private
information being made available on the Web or elsewhere.

Our suggested corrective action is to make sure that all
relevant stakeholders (developers, testers, support, etc.) are
involved when negotiating the acquisition of a software
component with a third party. The development team should
also make sure that all the activities planned for the project
are possible within the current contractual obligations. For
example, if the entire project hinges on a functionality that a
third party entity cannot or will not deliver, the whole
project can be thrown into jeopardy.

E. The generic case of “organically grown processes”

The issue of “organically grown processes” shows that
processes typically appear on an as-needed basis, and do not
follow a global plan. Allison and Merali describe the
appearance of processes in the following way: “Software
processes can be considered to emerge by means of a
structuring process between the context and the content of
the action” [8]. When the context and content of a
development activity warrants it, a process element is
added. An example would be an unexpected crisis, like a
software patch causing a whole system to crash. Crises like
these are usually followed by the introduction of process
elements dedicated to preventing similar crises.

This issue highlights the importance of building an
organization-wide process plan, such as the ones promoted
by CMMI-DEV [20] or ISO 15504 [21]. The problem with
organically grown processes is that they create islands of
formality—zones where various software engineering
processes have few interactions between them. Our
suggested corrective action is to plan an organization-wide
reviews aimed at detecting isolated processes and promoting
information flows between processes. Project post-mortems
could also serve to detect where missing information caused
a problem, and whether someone in the organization had
this information and could have prevented the problem.

To avoid resistance to change from software developers
[22], process improvement should focus first on a better use
of existing activities and materials. Changes to existing

processes should also be gradual, with an emphasis on
evaluating and demonstrating whether the change is useful.

F. The generic case of “budget protection”

Unfortunately, many organizations see only short-term
benefits. They want correct functionality, within budget and
on schedule, with good quality, in that order [2]. Reducing
the cost of future maintenance is rarely a priority. This
observational study provides more confirmation that
working software is more sought after than quality software.

One of the causes of this problem is that budgets are
closely monitored. Development teams are discouraged
from performing costly corrections that would benefit
software modules from other teams. These types of general-
purpose corrections or improvements need to be performed
in a distinct project, which can be difficult to get approved
since there are no immediately countable benefits.
Developers are therefore encouraged to apply quick patches,
instead of solving the issue once and for all.

 The impact of these quick patches has been widely
documented and identified as “software aging” [23] or
“technical debt” [24]. Technical debt is defined as a
technical shortcut which is cost effective in the short term
but expensive in the long term. Developers relying on
patches during development can accelerate the accretion of
technical debt. Quick patches applied haphazardly over
other patches are certainly more prone to create errors than a
careful resolution of the problem at hand.

Our suggested corrective action is to plan “special”
budget items to support long-lasting corrections or
corrections that are likely to benefit many modules. This
special budget could also benefit inter-team negotiations. It
might be easier to reach a settlement if the issue can be
resolved in a separate special project.

This case presents the need to reach a compromise
between developers who want to write perfect code, and
managers who want to avoid “gold plating”. A global view
of how the organization’s legacy code should be could help
the development teams know where accrued technical debt
might do more damage. Inter-team negotiations could be
easier if priorities are set in a global software plan.

G. The generic case of “scope protection”

The “scope protection” issue is strongly related to
deadlines. In the observed organization, changes in project
scope are usually supported by an extra budget. However,
budget changes do not necessarily change the project
timeline.

Therefore, this is a direct application of Brooks’ law,
which states that adding new resources to a late
development project only causes it to finish later [25]. In the
case observed, the extra resources were in the form of
developers added late in the process. These developers stood
mostly idle for some weeks as their mentors were already
swamped with work and could not train them properly. The
addition of new developers therefore slowed down the
development process, as the current developers spent part of
their time assisting the newcomers.

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

Projects with strict deadlines are risky, and should be
carefully monitored to avoid last-minute unplanned
activities. As Brooks wrote: “A project is one year late one
day at the time!” [25]. The problem is that for each task
added to an already tight deadline, the quality of the work
takes a hit. Our suggested corrective action is either to allow
deadline slippages, to enforce scope freezes on development
projects, or to implement a more open scope negotiation
process between teams involving a neutral judge (either a
senior developer or the IT department manager).

H. The generic case of “organizational politics”

Another, more human issue is related to “organizational
politics”. The company’s culture encourages managers to
work outside the software process and rely on internal
politics. The validation interview confirmed that
observation. Results are not obtained solely by following
due process, but also by calling in favors from colleagues.

This management approach has been labeled
“organizational politics”, because it uses a political
approach akin to lobbying [26]. Previous research on this
issue has shown that organizational politics are important in
some organizations, ensuring that software development
teams have the resources they need [26].

This is interesting because it shows that a CMMI or ISO
15504 certified organizational process is not sufficient to
increase project success, as the organizational culture
encourages employees to find solutions outside the
prescribed process. On the one hand, processes can define
useful information flows, but on the other hand humans
prefer to work face-to-face rather than through documents
and forms. Team members should therefore maintain a
careful balance between formal development processes and
informal human interactions, or as Allison and Merali put it,
they must make some “negotiated changes” to the
development processes [8].

I. The generic case of “human resource planning”

Many studies in software engineering pertain to the so-
called “truck number”, a metric attributed to Jim Coplien:
“How many or few people would have to be hit by a truck
(or quit) before the project is incapacitated?” ([7], p41).
For the team studied here, the “truck number” is a real issue,
as it is about to lose its only two members familiar with the
initial project and specifications.

The development was performed mostly in silos,
resulting in only one or two software developers gaining
expertise in any given domain, which caused problems
throughout the project. Whenever a developer took time off,
most work on his/her area of expertise had to be postponed
because no one else knew enough about how each piece of
the puzzle worked. Similarly, when a developer got
overwhelmed with work, the others could not help because
no one had the appropriate knowledge.

The “truck number” risk is therefore not only a threat to
project survival, but can also create delays when the
knowledgeable developer becomes a bottleneck.

Team members should make sure that knowledge is
appropriately distributed amongst them. Our suggested

corrective action is to promote practices which promote
knowledge sharing (e.g. pair programming, code reviews).
The objective is to break the silos and have the developers
work outside their areas of expertise once in a while.

J. The generic case of “undue pressure”

The “undue pressure” issue refers to priorities imposed
by a higher authority, whether upper management, a client,
or a respected colleague. However, this higher authority
might not have all the knowledge required to impose these
priorities. The higher authority dictates priorities according
to what he/she perceives as important, and not necessarily
what is really important at the team level. This can result in
the developers working on something that does not warrant
immediate attention, and thus wasting project resources.

The important role of upper management support for the
introduction of new practices (e.g. software process
improvement) has been confirmed many times in the past.
There does not seem to be much research on the relevance
of upper management decisions, however, nor on whether
these decisions are coherent with the needs of software
development teams.

Any intrusion into team dynamics by outsiders should be
done very carefully. These intrusions can be useful to
correct a problem, such as developers failing to apply a
procedure [8]. Our suggested corrective action is to make
sure the outsider has all the relevant information before
intruding at the team level.

V. CONCLUSION

The objective of this paper is to provide accurate
empirical data on the state of software engineering in
practice in a professional environment. The list of issues
presented in this paper is by no means exhaustive: many
more minor issues were observed during the ten month
study. Additionally, generalization of the issues to generic
cases shows that the main issues presented here are not new;
most of them have been previously discussed in the
literature. What this paper is stressing is that any software
development project should present few of these issues and
ideally none of them.

While these issues might not affect project success, our
observation shows that they do affect software quality. And
quality factors can have a major impact on maintenance
costs. If the Module developed in this project is successfully
deployed, it will likely be used for the decades to come. The
design flaws introduced because of the organizational issues
presented here will no doubt come back to haunt at least a
generation of developers to come, as the code written today
will be tomorrow’s legacy code. Is this the kind of legacy
we want to leave for future software developers?

ACKNOWLEDGMENT

This research would not have been possible without the
agreement of the company in which it was conducted,
(which prefers to stay anonymous), and without the generous
participation and patience of the software development team
members from whom the data were collected. To all these
people, we extend our grateful thanks.

This is a pre-print version of a paper presented at the 2015 International Conference on Software
Engineering (ICSE2015), 16-24 May 2015, Florence, Italy. Final print DOI is 10.1109/ICSE.2015.83

REFERENCES

[1] J. Mathew, "The relationship of organisational culture with

productivity and quality. A study of Indian software

organisations," vol. 29, pp. 677-95, 2007.

[2] H. Leung, "Organizational factors for successful management

of software development," Journal of Comp. Info. Systems,

vol. 42, pp. 26-37, 2001.

[3] C. B. Jaktman, "The influence of organisational factors on the

success and quality of a product-line architecture,"

Proceedings of ASWEC '98: Aus. Software Engineering

Conference, Los Alamitos, CA, USA, 1998, pp. 2-11.

[4] T. C. Lethbridge, S. E. Sim, and J. Singer, "Studying software

engineers: data collection techniques for software field

studies," Empirical Software Engineering, vol. 10, pp. 311-41,

2005.

[5] T. D. LaToza, G. Venolia, and R. DeLine, "Maintaining

mental models: A study of developer work habits,"

Proceedings of the 28th International Conference on Software

Engineering (ICSE '06), Shanghai, China, 2006, pp. 492-501.

[6] A. J. Ko, R. DeLine, and G. Venolia, "Information needs in

collocated software development teams," Proceedings of the

29th International Conference on Software Engineering (ICSE

2007), Minneapolis, MN, United States, 2007, pp. 344-353.

[7] L. Williams and R. Kessler, Pair Programming Illuminated.

Boston: Addison-Wesley, 2003.

[8] I. Allison, "Organizational factors shaping software process

improvement in small-medium sized software teams: A multi-

case analysis," Proceedings of the 7th International

Conference on the Quality of Information and

Communications Technology (QUATIC 2010), Porto,

Portugal, 2010, pp. 418-423.

[9] J. E. Burge and D. C. Brown, "Software engineering using

RATionale," Journal of Systems & Software, vol. 81, pp. 395-

413, 2008.

[10] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D. Perry,

"Sharing and reusing architectural knowledge - Architecture,

rationale, and design intent," Proceeding of the 29th

International Conference on Software Engineering (ICSE

2007), Minneapolis, MN, United States, 2007, pp. 109-110.

[11] Y. Ye, "Supporting software development as knowledge-

intensive and collaborative activity," Proceedings of the 2nd

International Workshop on Interdisciplinary Software

Engineering Research (WISER '06), Shanghai, China, 2006,

pp. 15-21.

[12] D. W. McDonald and M. S. Ackerman, "Just talk to me: A

field study of expertise location," Proceedings of the ACM

Conference on Computer Supported Cooperative Work, pp.

315-324, 1998.

[13] S. R. Ponnekanti and A. Fox, "Interoperability among

independently evolving Web services," in Middleware 2004.

ACM/IFIP/USENIX International Middleware Conference.

Proceedings, Berlin, Germany, 2004, pp. 331-51.

[14] T. P. Group. (2014, August 20th). PHP: Downloads.

Available: http://ca1.php.net/downloads.php

[15] G. Xiaojia and J. Lim, "Negotiation support systems and team

negotiations: the coalition formation perspective,"

Information and Software Technology, vol. 49, pp. 1121-7,

2007.

[16] Software Engineering Institute, "CMMI for Acquisition,

Version 1.3," Carnegie Mellon University, 2010, p. 438.

[17] IEEE Computer Society, "ISO 12207:2008 - Systems and

software engineering — Software life cycle processes,"

ISO/IEC, 2008.

[18] A. Al Bar, V. Basili, W. Al Jedaibi, and A. J. Chaudhry, "An

Analysis of the Contracting Process for an ERP System "

Proceedings of the Second International Conference on

Advanced Information Technologies and Applications

(ICAITA-2013), S. Vaidyanathan and D. Nagamalai, Eds., CS

& IT-CSCP, 2013, pp. 217-228.

[19] M. Riley, B. Elgin, D. Lawrence, and C. Matlack, "Missed

Alarms and 40 Million Stolen Credit Card Numbers: How

Target Blew It," Bloomsberg Businessweek, 2014.

[20] Software Engineering Institute, "CMMI for Development,

Version 1.3," Carnegie Mellon Nuiversity, 2010, p. 482.

[21] IEEE Computer Society, "ISO/IEC 15504:2004 - Software

Process Improvement and Capability Determination

(SPICE)," ISO/IEC, 2004.

[22] M. Lavallee and P. N. Robillard, "The impacts of software

process improvement on developers: A systematic review,"

Proceedings of the 34th International Conference on Software

Engineering (ICSE 2012), Zurich, Switzerland, 2012, pp. 113-

122.

[23] D. L. Parnas, "Software aging," Proceedings of the 16th

International Conference on Software Engineering, Sorrento,

Italy, 1994, pp. 279-287.

[24] S. McConnell, "Managing Technical Debt," Construx

Software Builders, Inc.2013.

[25] F. P. Brooks, The Mythical Man Month: Essays on Software

Engineering: Addison-Wesley, 1975.

[26] A. Magazinius and R. Feldt, "Exploring the human and

organizational aspects of software cost estimation,"

Proceedings of the 2010 ICSE Workshop on Coop. and

Human Aspects of Soft. Eng. (CHASE 2010), Cape Town,

South Africa, 2010, pp. 92-95.

